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A Note on Green’s Function for Microstrip

SHIMON COEN, STUDENT MEMBER, IEEE

Abstract—The electrostatic Green’s function for the open or cov-
ered microstrip line is obtained by an integral representation of the
free space Green’s function, the results of which may be applied to
obtain approximately the characteristics of the lowest order “quasi-
TEM?” mode of microstrip.

I. INTRODUCTION

The electrostatic Green’s function for the open microstrip line
may be obtained from extended image theory as illustrated by
Silvester [1] and later by Weeks [2]. Weiss and Bryant [3] derived
the covered microstrip Green’s function by using a computer al-
gorithm and this was refined by Farrar and Adams [4]. However,
in [4] the Green’s function is not explicitly given for all values of
b/ht and the logarithmic singularity inherent in their series representa-
tion is not immediately apparent. A direct method of obtaining
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1 p is the separation of the ground planes and h is the height of the
line source from the bottom ground plane.
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the Green’s function for an open or covered microstrip without using
extended image theory or a computer algorithm, valid for any b/h
and retaining the logarithmic singularity, is now given. The approach
used is conceptually similar to that of Kaden [5], in which the
capacitance of a pair of circular cylindrical wires above a dielectric
coated ground plane was determined.

II. FREE-SPACE GREEN’S FUNCTION

The free-space Green’s function satisfying

Vigo = ~8(x,y) 1)
is [6]
-1
o = log (r) (2)
2men
where
9? 92
2 =
V= Pl 3(zyy)

is the two-dimensional Dirac delta function, ¢ is the permittivity of
free space, and r = (2 + y?)¥2. An integral representation of
log (2) withz =y 4+ jzr and 2 = —1is [7] ’

log (2) = /“‘ exp (—A\) —)\exp (—Az) I’ 3)
0

where the integral converges provided Re (z) > 0. On taking the
real part of (3) and substituting for log (r) in (2), the free-space
Green’s function takes the form

1 f’” exp (=M |y ]) cos)\(kx) — exp (—1\) ™~

¢o = 4)

" e o

Note that in (4) the z and y variables are separated so that deriva-
tives may be easily obtained. Now the integral representation (4)
is used to derive the electrostatic Green’s function, the results of
which may be applied to obtain approximately the characteristics
of the lowest order “quasi-TEM’’ mode of a microstrip.

1II. OPEN MICROSTRIP GREEN’S FUNCTION

To ¢ are added functions satisfying the two-dimensional Laplace’s
equation, exhibiting the same z behavior as (4) and together with
¢o satisfying the appropriate boundary conditions. Thus with
reference to Fig. 1, the Green’s function for the open microstrip
may be chosen as

1
d(z,y) = Irer

_/‘”eXp (=My—al) +Ai) exp[—ry — A)]
A
]

scos (Az) dA (5)
for y > 0, and

T =
#2(2,y) y—
‘f“fz(k) exp [—Ny — A)T+ (M) exp (A (y — A)]
0 A
~cos (Az) dX\ (6)
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Fig. 1. Green’s function geometry for the open microstrip.
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for y < 0. Here A is defined in Fig. 1, ¢ is the dielectric constant, and
the functions f;(A), ¢ = 1,2,3 are to be determined from the prevailing
boundary conditions. The convergence of the integrals (5) and (6)
may be verified after the f;(A) are found. The boundary conditions
stated below and the representations (5), (6), yield the following
relations between the f;(A):

@1 (37,0) = ¢2(xy0)

L A0 e 0a)

€r

+ fs() exp (—2A)}
o¢1(2,0)  ¢u(x,0)
dy e Iy

exp (=M A]) + A0 exp (AA)

I

(7a)
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Silvester and Benedek obtained this result in [8] by extended image
theory; Weeks [2] obtained the Green’s function for a more general
location of the source point, again by using image theory.

1V. COVERED MICROSTRIP GREEN’S FUNCTION

With reference to Fig. 2, the Green’s function for the covered
microstrip may be chosen as

(o) = 5_71;6_ /” exp (A |y — Af) + /(A exp E—)\My = A)]+f(\) exp A (y — A)Zlcos () I (13)
 Jo
for y > 0, and
ta(ay) = 5 1 ‘/'“'fs()‘) exp [—A(y — A) ])‘+ £\ exp[A(y — A)] cos (Az) d (14)
T EGEr 0

exp (=M A ) — fi(A) exp (A4) = ~fa(A) exp (AA)

+ f3(A) exp (—AA) (7b)
¢2(z,—h) =0
ey exp[Ah + A)]+FH(\) exp[—~A(h + A)] =0 (7c)

(7a), (7b), (7¢) are 3 equations for the unknown f,(\). Since ¢; = ¢
at y = O there is no need to evaluate (5), so that f; is not required.
The limit A — 0 in (7) gives

— A exp (—2Mh)

1 — Kexp (—2\h) (82)

200 =
A
1 — Kexp (—20\h)
where K= (1 ~¢)/(1 + &) and A = 2¢/(1 4+ ). For these
f»fs the integral (6) is convergent. Since | K exp (—2M\r) | < 1,

(8a) and (8b) are readily expanded into uniformly convergent
series

fs(A) = (8b)

f2(0) = —A i Krexp [—2Mi(n + 1) ] (9a)
n=0
) = A i K exp (—2Mn). (9b)

n=0

Substitute (9) in (6) and interchange the order of summation and
integration; the Green’s function for the open microstrip line with

¥ (x’y) =re(l + e)ee (I’y)

becomes

® e ) — _
¢*(zy) = D K» f OXP (M) — €Xp (= Mn2) cos (Az) dA
n=0 0 A ‘

(10)

where ¥, = —y + 2hn and ype = y 4+ 2h(n + 1). Note that (10)
may be evaluated by inspection; it is evident from the definiton (4)
that

/‘ “exp (—Mn1) — exp (~Ayns)
° A

cos (Az) dX = log (Z'—L-z) (11)
Tn1

where 7m1 = (yn® + 22)12 and rpe = (Yno® + 22)2. Equation (11)
applied to (10) gives the open microstrip Green’s function, for the
origin (& ) as

for y < 0. The functions f;(7\), < = 1,2,3,4 are determined from the
4 boundary conditions,

¥1 (xrb) = 0’
Ya(z,—h) =0,
l//l(x;o) = \1’2(170),

a¢1 (Z,O) - 6502(117,0)
oy €r oy .

(15)

Using the same procedure as in Section III, the Green’s function
for the covered microstrip is

1 & T1Ts
Yr<y T o 71 1L N Cn 1
P2 (2, 9,6m) T T o) E o8 7 (16)
where
n!
Cp = ———— (—)ymKmin n =n; + ns + ns
n1!n2!n3!

K=({1-e/1+e), and Th k = 1,2,3,4 are given by

Ti= {2b(n1 -+ ms) +20(1 + 2+ ms) + (y — ) 2+ {z — £}?
Ty= {26(1 +m +mns) +2h(L 4+ no+mn) + (g — ) }2+ {z — £)2
Ts = 12b(1 +m + ns) +2h(n2 +ns) — (g — ) }2 + {2 — £}2

Ts= {2b(ny +n3) +2h(ne +n3) — (y —9) 12+ {z — £}%

Note that the summation employed in (16) is to be performed for
all combinations of (ny,mam;) that give n = 0,1,2,++-(e.g., for
n = 2 there are 6 combinations of n;,n2,7nz).

The covered microstrip Green’s function (16), which is apparently
new, contains the logarithmic singularity corresponding to n1 = ne =

y=b
/—Ilne source
(0,4)

€o

7 gt e
Y N

y=-h

Fig. 2. Green’s function geometry for the covered microstrip.
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ng = 0in T4, so that (16) may be written as

Yal(@,t,y,m) = log {(z — £)* 4+ (y — 2} + H(z,Eym)

-t
2rer (1 + €r)
7

where H (z,£,y,7) is continuous. For computational purposes this
separation of the singularity is important.

For b — « (16) reduces to the open microstrip Green’s function
(12) whereas for e = 1 the only nonzero terms in (16) occur with
ny = nz = 0 and it corresponds to the ¢n vacuo case of a microstrip
between ground planes.
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Field Propagation in an Open-Beam Waveguide

A. CONSORTINI, L. RONCHI, anxp R. TOGNAZZI

Abstract—A new method is described for the investigation of the
open-beam waveguides, which may be applied even when the optical
elements are not inserted in absorbing screens,

The theory of an open-beam waveguide deals, in general, with the
determination of the iterative beams associated with it [17]. When
the finite size of the optical elements composing the beam waveguide
is taken into account, the iterative beams turn out to be strictly
related to the oscillation modes of a suitable defined two-mirror open
resonator, equivalent to the beam waveguide 27, [3]. Such an open
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resonator is composed of mirrors which behave in reflection like the
optical elements of the waveguide behave in transmission.

An alternative method of treating the open-beam waveguides is to
study how the field originates from a given source, at a given distance
from the first guiding element, propagating from cell to cell. To this
end, we can choose a plane per cell, for example, at the input of each
guiding element, and evaluate the field at the points of the plane
mp41 in terms of the field at the points of the plane =, (Fig. 1). By
referring to a two-dimensional problem, where the quantities of
interest depend only on the longitudinal coordinate z and on one
transverse coordinate z, we can write, in the scalar approximation,

Una1(@ng1) =/ Vn (%n) Knnst (BnyTnsa) d2n (1)

-

where v; denotes the field (impinging) at the points of the plane =,
Z:2;, the coordinates of the points of =, and K, ;u, the Green’s
function describing the propagation from the plane =; to the plane
w41, including the transmission through L.

Starting with the source distribution v(x,), (1) allows us to eval-
uate 9;(2;), then v.(z2), and so on, in other words, to study the
evolution of the field through the waveguide. In the general case, the
evaluation of the fields v;{z;) must be done numerically, using an
electronic computer. This implies some practical difficulty when the
guiding elements are not inserted in absorbing screens. If the guiding
elements are ‘“‘diaphragmed’’ (Fig. 2), (1) can be written in the form

b
U1 (Tppr) = / 9 (Zn) Knunar (TnyZng1) din (2)

where b, — a, represents the aperture of the nth pupil, and the
evaluation of v, requires an integration over a finite interval, which
is easily done by the electronic computers. When the pupil apertures
have infinite width (only partially occupied by the guiding elements,
in practical cases), the integration is to be made over an infinite
interval, which creates problems of accuracy of the results.

It occurred to us, however, that this difficulty can be overcome in
the following way. Let us denote by &, and £,’ the limits of the region
of the plane r, occupied by L,. Equation (1) may be rewritten in the
form

.|_
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A general beam waveguide composed of the elements Ls, with
the reference planes ;.
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Fig. 2. A sequence of diaphragmed guiding elements.



