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where

is the two-dimensional Dirac delta function, cois the permittivit y of

free space, and r = (Z2 -I- @)1/2. An integral representation of

log (z) with z = y +jz and jz = –1 is [7] ‘

log (z) = (.
‘exp (—A) — exp (—Lz) ~X

(3)
Jo A

where the integral converges provided Re (z) >0. On taking the
real part of (3) and substituting for log (r) in (2), the free-space

Green’s function takes the form

~o=L
/

‘@exp (–A I y 1) cos (kc) – exp (–k) ~X
(4)

2rr.o ~ A

Note that in (4) the x and y variables are separated so that deriva-

tives may be easily obtained. Now the integrsJ representation (4)

is used to derive the electrostatic Green’s function, the results of

which may be applied to obtain approximately the characteristics

of the lowest order ‘(quasi-TEM” mode of a microstrip.

III. OPEN MICROSTRIP GREEN’S FUNCTION

To ~o are added functions satisf ying the two-dimensional Laplace’s

equation, exhibiting the same z behavior as (4) and together with

A Note on Green’s Function for Microstrip
+0 satisfying the appropriate boundary conditions. Thus with
reference to Fig. 1, the Green’s function for the open microstrip
may be chosen as . .
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Abstract—The electrostatic Green% function for the open or cov-
ered microstrip line is obtained by an integral representation of the
free space Green’s function, the results of which may be applied to

obtain approximately the characteristics of the lowest order ‘{quasi-
TEMt’ mode of microstrip.

I. INTRODUCTION

The electrostatic Green’s function for the open microstrip line

may be obtained from extended image theory as illustrated by

Silvester [1] and later by Weeks [2]. Weiss and Bryant [3] derived

the covered microstrip Green’s function by using a computer al-

gorithm and this was refined by Farrar and Adams [4]. However,
in [4] the Green’s function is not explicitly given for all values of
b/hi and the logarithmic singularity inherent in their series representat-

ion is not immediately apparent. A direct method of obtaining
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1 b is the separation of the ground planes and h is the height of the

line source from the bottom ground plane.

+1 (w) = -J-
2rreo

for y >0, and

(5)

$2 (X,y) = J--
2rT60er

/
. ‘.f2J) ew [–X(V - A)] +f, (h) exp [A(u – A)]

o A

-00s (b) dx (6)
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Fig. 1, Green’s function geometry for the open microstrip.
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for~ < O. Here Misdefined in Fig. l,e. isthedlelectric constant, and 1
the functions~~(~), i = l,2,3areto bedeterminedfrom theprevailing @(z,g,&v) =

boundary conditions. Theconvergence of the integrals (5) and (6)
27r,0(l +.,)

maybe verified after the.f~(~) are found. The boundary conditions

stated below and the representations (5), (6), yield the following . ~ K% log
[2h(n+l) +(v–n)l’+[z–:1’ ~12)

relations between the fi (~): .-0 [2kn–(?J -q)]2+[z-g]2 “

@(%o) =42(%0) Silvester and Benedek obtained this result in [8] by extended image
theory ;Weeks [2]obtained the Green’s function foramore general

exp (–l IA\) -1-fl(~) exp (1A) = ~{fj(~) exp (~A) location of the source point, again byusing image theory.

+f,(l)exp(–~A)) (7a) IV. COVERED MICROSTRIP GREEN’S FUNCTION

8+1(Z,o) = ,, 13r$2(%o)
With reference to Fig. 2, the Green’s function for the covered

ay ay microstrip may be chosen as

41 (X,Y) = J- /
‘exp (–A I y – A 1) +jl(k) exp [–A(Y – A)] +.h(~) exp [X(y – A)]cos ~kz) ~X

2mo ~ A

for y >0, and

exp (–X \ A 1) – jl(h) exp (AA) = –~j(~) exP (XA)

+ f, (k) exp ( –kA) (7b)

@z(z, –-h) = o

f2(A)exp [A(fi + A)] +f,(k) exp [–A(h + A)] = 0 (7c)

(7a), (7b), (7c) are 3 equations for the unknown.f, (A). Since @l = @
at ~ = O there is no need to evaluate (5), so that ~1is not required.

The limit A ~ O in (7) gives

f,(x) =
– A exp (–2M)

1 – Kexp (–2Mt)
(8a)

fa(A) =
A

1 – Kexp (–2M)
(8b)

where K = (1 — c,)/(1 + ~,) and A = 2e./(l + c,). For these

jz,j~ the integral (6) is convergent. Since I K exp ( –2M) \ <1,
(8a) and (8b) are readily expanded into uniformly convergent
series

fz(k) = –A ~ K~exp [–2M(n + 1)] (9a)
*-O

Substitute (9) in (6) and interchange the order of summation and
integration; the Green’s function for the open microstrip line with

42” (W/) = ~ co(1 + %)@2(z,Y)

m

+2* (xjy) = ~ K“
/

M exp ( —Xy.l) — exp ( —XW2)
A

Cos (M) ch (lo)
n=a o

where ~., = –y + 2hn and Y.Z = y + 2h(n + 1). Note that (10)

may be evaluated by inspection; it is evident from the definiton (4)
that

/

* exp ( – Aywl) — exp ( —Xynj)

x ()
COS (X2) dA = log w (11)

o
~nl

where r~l = (y~lz + X2)1/2 and rnz = (~~tz + X2)1/2. Equation (11)

applied to (10) gives the open microstrip Green’s function, for the
origin ($, q) as

(13)

(14)

for y <0. The functions f; (k), i = 1,2,3,4 are determined from the

4 boundary conditions,

$1($4) = o,

+Z(z,–h) = o,

$1 (%0 = $2.( GO),

a*l (X,o) r3*2 (X,o)— . e-—.
dy C?y

(15)

Using the same procedure as in Section III, the Green’s function
for the covered microstrip is

h (%YAN) = 2.,.(/+,,) g C“lo’%
(16)

where

c. = - (–) “IKCI+”Z, n=nl+m+?zs
. . .

K = (1– e,)/(1+ .,),and T*, k = 1,2,3,4 are given by

T, = {2b(?LI+?Z,) +2h(1 +?zz+?t3) + (Y–?7))2+ {Z–g)2

T,={2b(l +?tI+7L3) +2h(l+7tZ +7t,)+(~- q))2+{Z-f]z

T, = {2b(1 +n, +ri3) +2h(n, +n3) – (y–q)]’+ {z–&}z

2’4 = {%(?u +rz3) + 2h(n2 +n,) – (y – q))’ + {z – f]’.

Note that the summation employed in (16) is to be performed for
all combinations of (nl,nZ,n3) that give n = 0,1,2,. . . (e.g., for

n = 2 there are 6 combinations of ~Ij~2,~3).

The covered microstrip Green’s function (16), which is apparently

new, contains the logarittilc singularity correspond&to nl = nl =

Fig. 2. Green’s function geometry for the covered microstrip,
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na = O in Tl, so that (16) may be written as

–1
*2(&,%r7) = log {(z – g)’ + (?4– q)’) + H(%&J’,?7)

Zrw(l +,,)

(17)

where H(z,&y,V) is continuous. For computational purposes this
separation of the singularity is important.

Forb~ m (16) reduces totheopen microstrip Green’s function

(12) whereas fore,= ltheonly nonzeroterrn sin (16) occur with

m = nz = O and it corresponds to the in vacuo case of a microstrip
between ground planes.
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Tech. (Short Pape’& ),

Field Propagation in an Open-Beam Waveguide

A. CONSORTING, L. RONCHI, AND R. TOGNAZZI

Absfmct-A new method is described for the investigation of the

open-beam waveguides, which maybe applied even when the optical

elements are not inserted in absorbing screens.

The theory of an open-beam waveguide deals, in general, with the

determination of the iterative beams associated with it [1]. When

the finite size of the optical elements composing the beam waveguide

is taken into account, the iterative beams turn out to be strictly

related to the oscillation modes of a suitable defined two-mirror open

resonator, equivalent to the beam waveguide [2], [3]. Such an open
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resonator is composed of mirrors which behave in reflection like the

optical elements of the waveguide behave in transmission.

An alternative method of treating the open-beam waveguides is to

study how the field originates from a given source, at a given distance
from the first guidhg element, propagating from cell to cell. To this

end, we can choose a plane per cell, for example, at the input of each
guiding element, and evaluate the field at the points of the plane

m+l in terms of the field at the points of the plane r~ (Fig. 1). By
referring to a two-dimensional problem, where the quantities of

interest depend only on the longitudinal coordinate z and on one

transverse coordinate z, we can write, in the scalar approximation,

rCv
%+1 ($7z+1) = V. (wJ Kn,n+l (zn,%+Jdz.

J-m
(1)

where V; denote8 the field (impinging) at the points of the plane ~i,
z~,.s~,the coordinates of the points of ~~, and Ki,i+I, the Green’s
function describing the propagation from the plane rr~ to the piane

~i+l, including the transmission through L.

Starting with the source distribution V,(m), (1) allowe us to eval-

uate vi (xl), then VZ(m), and so on, in other words, to study the

evolution of the field through the waveguide. In the general case, the

evaluation of the fields Vi (xi) must be done numerically, using an

electronic computer. ‘This implies some practical difficult y when the
guiding elements are not inserted in absorbing screens. If the guiding

elements are’ Waphmgmed” (Fig. 2), (1) can be written in the form

where bn — q represents the aperture of the nth pupil, and the
evaluation of Vn+l requires an integration over a finite interval, which
is easily done by the electronic computers. When the pupil apertures

have infinite width (only partially occupied by the guiding elements,

in practical cases), the integration is to be made over an infinite

interval, which creates problems of accuracy of the resultg.

It occurred to us, however, that this difficulty can be overcome in

the following way. Let us denote by & and En’ the limits of the region

of the plane Z. occupied by L.. Equation (1) maybe rewritten in the

form

; i II
I

lb
I I
I& It It il

+++
.- ——- 1
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z

source \ ~, ~ ~2
I Ln ~ Ln+l

1, I
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Fig. 1. A general beam waveguide composed of the elements Li, with
the reference planes mi.
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Fig. 2. A sequence of diaphragmed guiding elements.


